Macam-Macam Rumus Bangun Ruang dan Contoh Soal Bangun Ruang

Macam-Macam Rumus Bangun Ruang dan Contoh Soal Bangun Ruang

Posted on

Macam-Macam Rumus Bangun Ruang dan Contoh Soal Bangun Ruang – Pada kesempatan kali ini kita akan membahas Macam-macam rumus bangun ruang dilengkapi dengan contoh soalnya, untuk lebih jelas silahkan simak ulasannya berikut ini :

Pengertian Bangun Ruang

Bangun Ruang merupakan penamaan atau sebutan untuk bangun-bangun 3 (tiga) dimensi atau bangun yang memiliki ruang yang dibatasi oleh sisi-sisinya. Contoh bangun ruang, yakni antara lain : kubus, balok, prisma, tabung, kerucut, limas dan bola.

Macam-Macam Rumus Bangun Ruang dan Contoh Soal Bangun Ruang

1. Rumus Kubus (Persegi)

Kubus terdapat 6 buah sisi yang berbentuk persegi dengan luas sama besar diantara sisinya. Terdapat 12 rusuk dengan panjang rusuk yang juga sama panjang. Semua sudutnya bernilai 90 derajat ataupun siku-siku.

Rumus Kubus ialah :

Luas salah satu sisi = rusuk x rusuk
Luas Permukaan Kubus = 6 x rusuk x rusuk
Keliling Kubus = 12 x rusuk
Volume Kubus = rusuk x rusuk x rusuk ( rusuk 3 )

Contoh Soal

Sebuah kubus panjang rusuknya 5 cm. Tentukan volume kubus tersebut!

Penyelesaian:

Vkubus = s3
Vkubus = (5 cm)3
Vkubus = 125 cm3

Jadi Vkubus = 125 cm3

2. Rumus Balok (Persegi Panjang)

Rumus Balok ialah :

Luas Permukaan Balok = 2 x {(pxl) + (pxt) + (lxt)}
Diagonal Ruang = Akar dari (p kuadrat + l kuadrat + t kuadrat)
Keliling Balok = 4 x (p + l + t)
Volume Balok = p x l x t (sama dengan kubus, tapi semua rusuk kubus sama panjang).

Contoh Soal

Sebuah mainan berbentuk balok dengan volume 140 cm3. Jika panjang mainan tersebut 7 cm dan tinggi mainan 5 cm, tentukanlah lebar mainan tersebut.

Penyelesaian:

V = p.l.t
140 cm3 = 7 cm.l. 5 cm
l = 140 cm3/35 cm
l = 4 cm

Jadi lebar mainan tersebut adalah 4 cm.

3. Rumus Bangun Ruang Bola

Rumus Bola ialah :

Luas Bola = 4 x π x jari-jari x jari-jari, atau
4 x π x r2
Volume Bola = 4/3 x π x jari-jari x jari-jari x jari-jari
π = 3,14 atau 22/7

Contoh Soal

Diketahui jari-jari sebuah bola basket ialah 7 cm, apabila π = 22/7 maka berapakah volume dari bola basket tersebut?

Jawab:

V = 4/3 π x r³
= 4/3 x 22/7 x 7³
= 4/3 x 22/7 x 343
= 1437.3 cm³.

Maka, volume dari bola basket itu adalah 1437.3 cm³.

4. Rumus Bangun Ruang Tabung (Silinder)

Rumus Tabung ialah :

Volume = luas alas x tinggi, atau
luas lingkaran x t
Luas = luas alas + luas tutup + luas selimut, atau
( 2 x π x r x r) + π x d x t)

Contoh Soal

Sebuah tabung mempunyai jari-jari berukuran 10 cm. Jika tingginya 21 cm, tentukanlah volume dari tabung tersebut!

Penyelesaian:

Diketahui : Jari-jari (r) = 10 cm
Tinggi (t ) = 21 cm
Ditanya : Volume tabung (v)

Jawab :

Macam-Macam Rumus Bangun Ruang dan Contoh Soal Bangun Ruang

Jadi volume tabung tersebut adalah 6600 cm3

5. Rumus Bangun Ruang Kerucut

Rumus Kerucut ialah :

Volume = 1/3 x π x r x r x t
Luas = luas alas + luas selimut

Contoh Soal

Sebuah kerucut mempunyai tinggi 15 cm dan jari-jarinya 7 cm. Hitunglah volume dari kerucut tersebut!

Penyelesaian:

Diketahui : jari-jari (r) = 7 cm
Tinggi (t ) = 15 cm
Ditanya : Volume kerucut(v)

Jawab :

Macam-Macam Rumus Bangun Ruang dan Contoh Soal Bangun Ruang

Jadi volume kerucut tersebut adalah 770 cm3

6. Rumus Bangun Ruang Limas

Rumus Limas ialah :

Volume = 1/3 luas alas tinggi sisi
Luas = luas alas + jumlah luas sisi tegak

Contoh Soal

Sebuah bangun berbentuk limas dengan alas berbentuk persegi dengan sisi 12 cm. Tentukanlah volume dari limas tersebut jika tingginya 30 cm!

Penyelesaiannya:

Diketahui : sisi alas (s) = 12 cm
tinggi limas (t) = 30 cm

Ditanya : volume limas

Jawab :

Macam-Macam Rumus Bangun Ruang dan Contoh Soal Bangun Ruang

Jadi volume limas tersebut adalah 1440 cm3

7. Rumus Ruang Bangun Prisma

Prisma segitiga terdiri atas beberapa bagian, yakni: tutup, alas, dan selimut. Sehingga untuk menacari luas keseluruhan dari prisma perlulah menjumlahkan luas alas, luas tutup, serta luas selimutnya:

Luas Prisma = Luas alas + Luas Tutup + Luas Selimut

Rumus Luas Permukaan Prisma Segitiga

Karena luas alas & tutup prisma akan selalu sama besarnya, maka rumus luas dari prisma dapat di sederhanakan menjadi seperti ini:

2x Luas Alas + Luas Selimut

atau

2x Luas segitiga + Luas Selimut/Selubung

Karena Alas dari prisma segitiga mempunyai bentuk segitiga, maka tentunya harus menerapkan rumus luas segitiga untuk mengetahui luas alas dari prisma tersebut. Dan juga harus memahami bagaimana cara menghitung luas persegi panjang karena bagian selimut dari prisma segitiga mempunyai bentuk persegi panjang seperti gambar sebelumnya diatas.

Rumus Volume Prisma Segitiga

Pada umumnya, rumus volume dari sebuah prisma ialah:

V= Luas alas x Tinggi

Namun, untuk prisma segitiga rumus tersebut diubah menjadi:

(1/2 x Alas Segitiga x Tinggi Segitiga) x Tinggi Prisma

Contoh Soal

Sebuah prisma mempunyai volume 240 cm3. Alas prisma tersebut berbentuk segitiga siku-siku dengan panjang sisi siku-sikunya masing-masing ialah 8cm dan 6cm. Lalu, berapakah tinggi dari prisma tersebut?

Cara Menjawab:

Volume prisma = Luas Alas x Tinggi Prisma
240 = (½ x a x t) x Tinggi Prisma
240 = (½ x 8 x 6) x Tinggi Prisma
240 = 24 x tinggi prisma

Tinggi prisma = 240 : 24 = 10 cm

Itulah sekilas penjelasan tentang Macam-Macam Rumus Bangun Ruang dan Contoh Soal Bangun Ruang, terima kasih telah menyempatkan membaca, semoga artikel yang anda baca bermanfaat, jangan sungkan untuk mengirimkan kritik maupun saran kepada redaksi kami

Baca Juga >>>